
 

 

 

Data warehouse  

Before starting with data warehouse learn what is olap and oltp, olap is online 

analytical processing and oltp is online transaction processing. Oltp is 

responsible for entering the data into data warehouse, it is responsible for 

keeping all the data of transactions, now the data goes to data warehouse 

where it structured and it runs multiple queries which is used to get insight s 

from data. Olap is responsible for running multidimensional complex queries on 

data to have knowledge from it to determine our future decisions and give the 

results  

Oltp>>>>>data warehouse>>>>>>olap . 

 

📖 

●​ OLTP = Short Notebook 📓 → Keeps quick, real-time records 

(transactions, updates). 

●​ Data Warehouse = Encyclopedia 📚 → Stores everything in an organized 

way, holding data from different sources. 

●​ OLAP = Librarian 👩‍🏫 → Helps analyze, summarize, and fetch the right 

insights from the encyclopedia. 

 

 

ETL  

(Extract-Transform-Load) 

First data is extracted from various sources and sent to the etl tools(many 

available in market space), now the data is cleansed{Data Cleansing (Data 

Cleaning) Explained 

Data Cleansing is the process of detecting, correcting, and removing inaccurate, 

incomplete, or irrelevant data from a dataset to improve its quality and 

reliability.} 

 



 

 

Now the data is loaded onto a staging area. Now all business rules will be 

applied on data.  

1)all data should always be in master table record  

And certain other steps to further ensure data authenticity and then loaded in 

the dimension  

In the architecture of a data warehouse, first  to etl that from different sources 

to either data mart or data warehouse then it is loaded subsequently  in 

data warehouse or data mart respectively, whichever way you choose 

then there is data access layer where you get reporting tool like jasper  

 

 

 

 

Data marts are customized reporting from data warehouse or to be uploaded 

to data warehouse.   

Aws connections 

We use connections to connect to different databases.​  

 

 



 

 

You have to use an etl tool to ready and clean the data some etl tools are 

informatica, Talend, and Apache NiFi other. 

Although a lot of issues will be faced when downloading some ETL tools so 

AWS GLUE is preferred one as it more reliable available and easy to access. 

 

Two main features of GLUE are data catalog and spark etl engine. 

Can connect to 70 different data sources, and manage in a centralized way  

Main components of AWS GLUE are : 

●​ Database  

●​ Crawlers 

●​ Connections 

●​ Tables 

●​ Etl jobs 

●​ Triggers 

 



 

●​ Workflows 

 

TABLES 

object withing the aws data catalog that defines the schema of the 

unstructured data we added in s3 or db or rds, these table store the metadata 

of the actual tables stored in the sources, 

Plays a crucial role in organizing the data in a queried way. 

S3 – data storage 

Dynamo DB- NoSQL of AWS 

RDS- SQL of AWS 

Crawlers 

It is a program that connects to the data source and automatically scans data in 

various sources to determine its schema and create metadata tables in aws 

glue data catalog  

{{so can edit the table schema ourselves after creating databases and tables or 

use crawlers to infer automatically if we are not ensuing for precision in 

terminal }} 

 

Aws connections 

We use connections to connect to different databases to RDS, Dynamo db  

Aws glue ETL jobs  

 

 

Aws visual ETL works the same way as the diagram in in any etl tool like talend 

and informatica works, here you take data, therefore choose a source 

select what you want to do with data hence choose transform and at last 

target of where to store the altered data.  

 

 



 

Aws glue can use data sources from s3, redshift and others as sources and even 

on premises server  

While working on aws glue you also have to setup IAM(Identity & Access 

Management) roles and later assign it to that service so that service first 

can access the databases and sources to take data and secondly to log 

that data in cloudwatch logs, 

Now will discuss some other ETL tools in the aws glue  

1.) ETL jobs -you can create what you want to do with your data and can do it in 

different types, visual, code, etc 

2) Connectors- Google BigQuery is available as a connector in AWS Glue to 

provide users with the ability to seamlessly move data between Google 

BigQuery and other data sources or destinations in AWS, enabling a 

more integrated, multi-cloud data processing and analytics workflow. 

This can be especially useful for organizations that use services from 

both Google Cloud and AWS, or for those that want to leverage the 

strengths of both cloud platforms. 

3) Data Catalog tables- which stores metadata of your sourced tables. 

{METADATA- data about the table itself, not the data stored within it. It includes 

information like table names, column names and types, primary and 

foreign keys, indexes, constraints, and relationships with other tables.} 

4) Workflow- A workflow is a collection of multiple dependent AWS Glue jobs 

and crawlers that are run to complete a complex ETL task.  

{when you create a job it will be added as one, when you trigger for that job it 

will be added as another.} 

5)Zero ETL integration- Zero-ETL integration in AWS Glue refers to a set of fully 

managed integrations that minimize or eliminate the need to build 

traditional ETL pipelines for data movement and replication. Instead of 

extracting, transforming, and loading data, zero-ETL allows direct access 

to data in-place or replication to destinations like Amazon Redshift and 

Amazon SageMaker Lakehouse without the need for intermediate 

transformation steps.  

 



 

6)AWS Glue Stream schema registry- It tracks and record the 

schemas of our tables to make sure consistency is 

maintained across glue and every data is standardized. 

 

XX->How to connect aws glue to on-prem server of 

data-sources 

 

To have this connections completed follow these steps: 

JDBC(java database connectivity) 

https://aws.amazon.com/blogs/big-data/how-to-access-and-analyze-on-premis

es-data-stores-using-aws-glue/ 

1)​ Create a security group for where in inbound rules you allow all tcp for 

all 

2)​ For outbound allow all tcp, port 5432 for SQL(your device ip) , DNS udp 

and tcp all, and also open it for s3 (so add s3 ip) in ip prefix list as well as 

https for  

 

https://aws.amazon.com/blogs/big-data/how-to-access-and-analyze-on-premises-data-stores-using-aws-glue/
https://aws.amazon.com/blogs/big-data/how-to-access-and-analyze-on-premises-data-stores-using-aws-glue/


 

3)​ $ curl -s https://ip-ranges.amazonaws.com/ip-ranges.json | jq -r 
'.prefixes[] | select(.service=="S3") | select(.region=="us-east-1") | 
.ip_prefix' for ip of s3 

4)​ Then create an iam role as told 
5)​ Go to connection, and add a jdbc connection you will find it, in there 

add a jdbc URL which is jdbc:protocol://host:port/db_name 
6)​ Protocol is port is 5432 db_name you will tell ChatGPT it will tell you 

what the protocol will be  
7)​ jdbc: postgresql://172.31.0.18:5432/glue_demo 
8)​ open apt firewall ports in on-prem so that data from private subnets 

can come to it,  
9)​ now test jdbc connection  
10)​and other some steps like adding crawler you can learn it from the 

website  
 
now to have the etl job create by pyspark code script ::::

 
 
in here whatever has been greyed out you need to specify in details which are 
the parameters, where you will specify where to where from , what to etc. 
 
 

getting back on warehousing !!!!!!!!!!! 
 
 
 
 
 
 
Data marts: smaller versions of data warehouse, they 
basically deal with data from limited sources. 

 



 

Therefore time efficient in creation. 
 
3 types of DM: 
1: dependent data mart 
Oltp>>>data ware>>>data mart 
2: independent data mart 
Oltp>>>data mart 
3: hybrid data mart 
Oltp>>>data mart<<<<data warehouse 
 
While creating Data warehouse there are 2  
approaches: 
1: top down (dw>>>>dm) (Inmon approach) 
2: bottom up(dm>>>dw) 
{dw- data warehouse, dm- data mart} 
[>>> indicating flow direction of data] 
 
ODS (operational data store) 
It is small window of data between oltp and data 
warehouse, it keeps real time data, no backing memory, 
It is either continuous or snapshot ods. 
 
Some important things in data warehousing 
1: dimension table (Table of content) 
2: subject (topic of table) 
3: dimensions (diff subtopics) 
4: attributes (subtopics well defined) 
 
Fact table 
 
A measure that can be manipulated summed or multiplied, 
averaged. It contains a dimension a dimension key and a 
measure 
Such as product    product_id     unit_sold 
Types of facts 
1: additive facts 
2: semi-additive facts 
3: non-additive facts  
4: fact less fact 
5: transaction fact table 
6: snapshot fact table 
7: accumulated fact table 

 



 

 
 
 
Slowly Changing Dimensions 
Dimensions which don’t change for a long time are slowly 
changing dimensions, but when need to be changed they are 
amended or edited in 3 types 
1:overwrite the old value 
2:add a new row 
3:add a new column  
 
 
Conformed dimension: sharing related  
Degenerated dimension: not related to anyone  
Junk dimension: A junk dimension is essentially a 
collection of random transactional codes, flags, and/or 
text attributes which are unrelated to any particular 
dimension 
 
Role playing dimension:A role-playing dimension is a 
dimension table that can be used in multiple contexts, 
each with a different meaning. For example, a date 
dimension table can be used to create order date, ship 
date, and delivery date dimensions.  
 
 
TYPES OF ANOMALIE: 
1: insert anomaly 
2: update anomaly 
3: delete anomaly 
Therefore, to avoid these anomalies we use the 
NORMALIZATION: 
Arranging the data in small groups  
Remove data redundancies 
Updating the table should change only at one place not all 
things updates 
There must be no impact on speed accuracy and integrity of 
the data  
 
HEIRARCHIES: 
Where dimensions have a parent child relationship among 
each other, 3 types of hierarchies 

 



 

1: balanced 
2: unbalanced 
3: Ragged 
1:->->where same level dimensions have same no. of child  
And so, on other could be intercepted that way 
3: where levels are skipped  

 
 
(MIDDLE TIER) 
1. ROLAP (Relational OLAP) 

●​ Storage: Uses relational databases (RDBMS) to store 
data in tables. 

●​ Query Processing: Translates OLAP queries into SQL 
and retrieves data dynamically. 

●​ Performance: Slower for complex queries because it 
depends on SQL execution in relational databases. 

●​ Scalability: Can handle large datasets efficiently 
since it leverages relational databases. 

●​ Example Tools: IBM Cognos, MicroStrategy, SAP 
BusinessObjects. 

2. MOLAP (Multidimensional OLAP) 
●​ Storage: Uses a precomputed, multidimensional data 

cube to store data. 
●​ Query Processing: Retrieves data directly from 

pre-aggregated cubes, making queries much faster. 
●​ Performance: High speed for complex analytical 

queries since data is already pre-processed. 
●​ Scalability: Limited by storage, as data cubes can 

become very large. 

 



 

●​ Example Tools: Microsoft Analysis Services (SSAS), 
Oracle Essbase, IBM TM1. 

 
 

DATA LAKES  
A data lake is like a massive data repository, designed to store any kind of data or big 

data which can be structured, semi-structured and unstructured data. And it makes 

possible to store data in its original as-it forms. 

A data lake holds data volumes before a specific use case has been identified. For 

better decision making, there is no need to be concerned about structuring the data 

first or having different types of analytics execution from dashboard and visualization, 

real time analytics and machine learning for big data processing. 

●​ Analytical Sandboxes: An analytical sandbox layer is secured, testing 

environment. This layer provides a dedicated environment within a data lake 

architecture, where data scientists, analysts or researchers tests and 

experiment and explore the data and derive insights, without compromising 

the integrity or quality of the data. Transformed data and raw data both 

imported into the analytical sandboxes. 

●​ Data Consumer: As we delve further into the architecture, we reach the Data 

consumer layer. At this layer, the data is accessible and available once all 

preceding processes have been completed. This is where the data is ready for 

analysis and insights generation. 

Steps:(by aws lake formation, Athena​ , s3, glue) 

Step 1: Create IAM User 

●​ Search and select below permissions: 

o​ AmazonS3FullAccess 

o​ AmazonAthenaFullAccess 

o​ AWSCloudFormationReadOnlyAccess 

o​ AWSGlueConsoleFullAccess 

o​ CloudWatchLogsReadOnlyAccess 

 

Step 2: Create IAM Role 

 

https://www.geeksforgeeks.org/what-is-big-data/
https://www.geeksforgeeks.org/what-is-big-data/
https://www.geeksforgeeks.org/what-is-data-lake/


 

●​ After creating IAM User, now we have to create IAM Role, to catalog the data which is stored 

in Amazon S3 Bucket for our Data Lake. 

Next, select "AWS Service" option. and type "Glue" as the AWS service . add permissions, search for 

"PowerUserAccess" policy  

Step 3: Create S3 Bucket to Store the Data 

●​ We have successfully created our IAM users and IAM role for our AWS Data Lake, now to 

store our data we need to create Amazon S3 Bucket. in this demonstration we are uploading 

data manually into the S3. 

Upload the files 

Step 4: Data Lake Set Up using AWS Lake Formation 

●​ Our data is ready to ingest into the data lake. now will begin to set up our Data Lake. in data 

lake we will create a database. Search and navigate to the AWS Lake formation console. 

●​ Add administrator that performs administrative tasks of data lake. click on "Add 

Administrators" button to add administrators for your data lake (if you are working with AWS 

Lake Formation for the First time, only then "Add administrators" window will pop up). 

●​ Administrator is added, now it's time to create a database. you will find the option to create 

a database in left hand side menu click on "Databases" and under databases click on "Create 

database" button. 

●​ Enter Database Name as per your wish. after that you have to 
browse and provide your S3 bucket path in which your data is 
stored, in the "Location" box. 

●​ Also make sure to uncheck the "Use Only IAM Access Control for 
New tables in this database" checkbox. after that click on "Create 
Database" button. and here you go your database is created in no 
time. 

●​ Database is created, now we have to register our S3 bucket as a 
storage for our data lake. for that find and click on "Data Lake 
locations" option from the left-hand side menu, click on "Register 
Location", browse and enter S3 bucket path where data is stored. 
after giving S3 path, choose IAM role as 
" AWSServiceRoleForLakeFormationDataAccess" by default and 
click on "Register Location". 

Step 5: Data Cataloging using AWS Glue Crawlers 

●​ While building the Data Lake, it is essential for data in the data Lake should be catalogued. 

using AWS Glue the process of data cataloging becomes easy. 

 

https://www.geeksforgeeks.org/how-to-create-an-iam-user-in-aws/
https://www.geeksforgeeks.org/introduction-to-aws-simple-storage-service-aws-s3/
https://www.geeksforgeeks.org/top-aws-services/


 

●​ AWS Glue provides ETL (Extract, Transform, Load) service, meaning AWS Glue first transform, 

cleanse and organize data coming from multiple data sources before loading data into the 

Data Lake. AWS Glue makes data preparation process efficient by automating the ETL jobs. 

●​ AWS Glue offers crawlers which automates the data catalog process, for better discovery, 

search and query big data. 

●​ To create a data catalog in the Database, AWS Glue Crawler will use IAM role which we have 

created in previous step. 

●​ Go back to the AWS Lake Formation console again, click on "Databases" option you will see 

your previously created database. select your database and you will see an "Action" button, 

under Action Dropdown menu click on "Grant" option. 

●​ On the next window, you have to choose your previously created IAM Role for "IAM 
Users & roles". scroll down you will see Database Permissions field, check boxes 
for only "Create Table" and "Alter" permissions and click on "Grant" button. 

●​ Navigate to the AWS Lake Formation console, click on "tables" from the menu, you 
can check here also table is created. 

Step 6: Data Query with Amazon Athena 

●​ Amazon Athena is a Query Service offered by AWS, Amazon Athena allows us to analyze data 

which stored in Amazon S3 Bucket efficiently using Standard SQL. 

●​ When we are working with a large amount of data, we need some sort of querying tool for 

analyzing the data or big data, and here is where Amazon Athena comes into play, using 

Amazon Athena makes it easy for analyzing the data present in Amazon S3 Bucket. 

●​ When we are using Amazon Athena, we don't need to be good at SQL (Structured Query 

Language) for querying data, by default Athena supports Standard SQL Query language, 

because of that data analysts, data scientists and organizations are able to perform analytics 

and derive valuable insights from the data. 

●​ Amazon Athena allows user to query data stored in Amazon S3 in its original format. 

Navigate to the Amazon Athena Console. 

●​ Click on "Query Editor", select Database which we have created in the earlier steps, but 

before executing any query we need to provide "Query Result Location" which is Amazon S3 

Bucket. 

●​ Amazon Athena stores Query Output and Metadata for each Query which executes in "Query 

Result Location". 

●​ we have to create S3 bucket to store our Query results in this bucket, click on "Set up a query 

result location in Amazon S3" tab and provide S3 bucket's path and hit the "Save" button. 

●​ We have added the "Query Result Location", Now we can Run our Queries in Amazon 

Athena Query Editor. 

●​ Run the following MySQL Query and click on "Run" button. 

 

 

https://www.geeksforgeeks.org/introduction-to-aws-glue-etl/
https://www.geeksforgeeks.org/aws-athena/
https://www.geeksforgeeks.org/sql-tutorial/


 

(by s3, Athena, aws cli, docker or gui) 

Go to gary Stradford youtube, amazon. 

 

DATA LAKEHOUSE 

 

(Fig.) MEDALLION ARCH. 

 

Bronze layer (raw data) 

The Bronze layer is where we land all the data from external source systems. The table structures in 

this layer correspond to the source system table structures "as-is," along with any additional 

metadata columns that capture the load date/time, process ID, etc. The focus in this layer is quick 

 



 

Change Data Capture and the ability to provide an historical archive of source (cold storage), data 

lineage, auditability, reprocessing if needed without rereading the data from the source system. 

Silver layer (cleansed and conformed data) 

In the Silver layer of the lakehouse, the data from the Bronze layer is matched, merged, conformed 

and cleansed ("just-enough") so that the Silver layer can provide an "Enterprise view" of all its key 

business entities, concepts and transactions. (e.g. master customers, stores, non-duplicated 

transactions and cross-reference tables). 

The Silver layer brings the data from different sources into an Enterprise view and enables 

self-service analytics for ad-hoc reporting, advanced analytics and ML. It serves as a source for 

Departmental Analysts, Data Engineers and Data Scientists to further create projects and analysis to 

answer business problems via enterprise and departmental data projects in the Gold Layer. 

In the lakehouse data engineering paradigm, typically the ELT methodology is followed vs. ETL - 

which means only minimal or "just-enough" transformations and data cleansing rules are applied 

while loading the Silver layer. Speed and agility to ingest and deliver the data in the data lake is 

prioritized, and a lot of project-specific complex transformations and business rules are applied while 

loading the data from the Silver to Gold layer. From a data modeling perspective, the Silver Layer has 

more 3rd-Normal Form like data models. Data Vault-like, write-performant data models can be used 

in this layer. 

Gold layer (curated business-level tables) 

Data in the Gold layer of the lakehouse is typically organized in consumption-ready "project-specific" 

databases. The Gold layer is for reporting and uses more de-normalized and read-optimized data 

models with fewer joins. The final layer of data transformations and data quality rules are applied 

here. Final presentation layer of projects such as Customer Analytics, Product Quality Analytics, 

Inventory Analytics, Customer Segmentation, Product Recommendations, Marking/Sales Analytics 

etc. fit in this layer. We see a lot of Kimball style star schema-based data models or Inmon style Data 

marts fit in this Gold Layer of the lakehouse. 

So you can see that the data is curated as it moves through the different layers of a lakehouse. In 

some cases, we also see that lot of Data Marts and EDWs from the traditional RDBMS technology 

stack are ingested into the lakehouse, so that for the first time Enterprises can do "pan-EDW" 

advanced analytics and ML - which was just not possible or too cost prohibitive to do on a traditional 

stack. (e.g. IoT/Manufacturing data is tied with Sales and Marketing data for defect analysis or health 

care genomics, EMR/HL7 clinical data markets are tied with financial claims data to create a 

Healthcare Data Lake for timely and improved patient care analytics.) 

 

 

 

What is an ACID Transaction? 🔥 

An ACID transaction ensures that database operations are reliable, consistent, and fault-tolerant. 

ACID stands for: 

1️⃣ A - Atomicity 💣 

 



 

●​ "All or nothing" rule: Either the entire transaction completes successfully, or nothing 

happens. 

●​ If one part of the transaction fails, the whole operation is rolled back. 

●​ Example: In banking, if you transfer money, both debit & credit must happen together—or 

neither happens. 

2️⃣ C - Consistency ✅ 

●​ The database must move from one valid state to another. 

●​ No corrupted or invalid data should be stored. 

●​ Example: If a transaction follows business rules (e.g., no negative balances), consistency 

ensures the rules are never broken. 

3️⃣ I - Isolation 🔀 

●​ Multiple transactions running at the same time should not interfere with each other. 

●​ Ensures transactions are independent, even under high concurrency. 

●​ Example: If two users buy the last ticket at the same time, only one should succeed. 

4️⃣ D - Durability 💾 

●​ Once a transaction is committed, it is permanently saved, even if the system crashes. 

●​ Ensures no data loss after a successful transaction. 

●​ Example: If you book a flight and the system crashes, your booking should still exist after 

restart. 

●​ ACID Transactions in a Lakehouse (Delta Lake, Iceberg, Hudi) 
●​ Traditional data lakes lack ACID transactions, making them unreliable for structured 

analytics.​
A Lakehouse (using Delta Lake, Apache Iceberg, etc.) adds ACID properties to big data 
storage, ensuring:​
✅ Reliable data updates & deletes (important for GDPR compliance).​
✅ Concurrency control, preventing dirty reads & write conflicts.​
✅ Faster real-time analytics, like a traditional database. 

●​ Would you like an example of ACID in Databricks, Delta Lake, or SQL? 🚀 

   THE MEDALLION ARCH IS FOR LAKEHOUSE.  IT IS BASICALLY TRANSITION OF DATA LAKES IN 

LAKEHOUSE LIKE BRONZE TO SILVER- GOLD 

 

✅ What Makes a True Lakehouse? ✅ 

A Lakehouse is more than just a data lake with SQL—it must combine the scalability of a data lake 

with the governance and performance of a data warehouse. 

🔥 Key Features of a True Lakehouse 

 



 

1️⃣ Open & Scalable Storage (Like a Data Lake) 

✔ Stores structured, semi-structured, and unstructured data (JSON, Parquet, CSV, images, etc.).​
✔ Uses cheap cloud storage (S3, ADLS, GCS) instead of expensive warehouse storage.​
✔ Schema flexibility → Can handle raw, unstructured data without strict schemas. 

2️⃣ ACID Transactions (Like a Data Warehouse) 

✔ Ensures data consistency & reliability (Insert, Update, Delete safely).​
✔ Prevents data corruption & ensures rollback if something fails.​
✔ Unlike traditional data lakes, a Lakehouse supports transactions like a database. 

3️⃣ Schema Enforcement & Governance 

✔ Unlike data lakes (schema-on-read), a Lakehouse supports schema-on-write.​
✔ Ensures quality, validation, and versioning of data as it moves from raw → refined.​
✔ Role-based access control (RBAC) for security and compliance (GDPR, HIPAA). 

4️⃣ Performance & Indexing (Like a Warehouse) 

✔ Uses caching, indexing, and optimized storage to speed up queries.​
✔ Unlike raw data lakes (which are slow), a Lakehouse supports fast analytics.​
✔ Supports BI tools, dashboards, and ML workloads (Databricks SQL, Snowflake, etc.). 

5️⃣ Supports BI, AI, & ML in One Place 

✔ Unlike a traditional warehouse (only for structured data), a Lakehouse supports: 

●​ Business Intelligence (BI) with SQL. 

●​ Machine Learning (ML) with notebooks and Python. 

●​ Real-time analytics & streaming.​
✔ Removes the need for separate Data Lake + Warehouse, simplifying architecture. 

 



 

 

 
 
1️⃣ ACID Compliance: Handling Refunds & Order Updates 
❌ Data Lake Approach (S3-based Storage) 
Situation: 
A customer orders a laptop (Order ID: 12345) but cancels 
it 5 minutes later. 

●​ The order data is stored in S3 as a raw JSON file. 
●​ The refund system queries the order database while a 

batch job is still processing cancellations. 
●​ Since S3 does not support transactions, some queries 

return "Order 12345 exists" while others return 
"Order 12345 not found" at the same time! 

Impact: 
●​ The finance team processes a refund twice, leading to 

a financial error. 
●​ Analysts get incorrect revenue reports, showing the 

laptop sale even though it was refunded. 
 

✅ Lakehouse Approach (Delta Lake / Apache Iceberg) 
Situation: 
With Lakehouse, the data is stored in Delta Lake on top of 
S3. 

 



 

●​ ACID transactions ensure that updates are atomic. 
●​ A rollback mechanism prevents double refunds. 
●​ The refund system sees a consistent view of the order 

data at any time. 
Impact: 

●​ No financial errors. 
●​ Analysts get the correct revenue reports. 
●​ Customer support sees only valid, up-to-date order 

details. 
 

2️⃣ Schema Enforcement: Handling Product Catalog Changes 
❌ Data Lake Approach (Schema-on-Read) 
Situation: 
The product catalog team updates the product schema, 
adding a new field: 

●​ Old schema: ProductID, Name, Price, Stock 
●​ New schema: ProductID, Name, Price, Stock, Discount 

Since the schema is applied only when queried, analysts 
running reports get mixed data formats: 

●​ Some products show the new "Discount" column, others 
do not. 

●​ Reports fail due to missing columns or data type 
mismatches. 

Impact: 
●​ Business reports show incomplete discounts. 
●​ The analytics team needs to write custom scripts to 

handle schema mismatches. 
 

✅ Lakehouse Approach (Schema-on-Write) 
Situation: 
With a Lakehouse, schema changes are validated before 
ingestion. 

●​ If a new "Discount" column is added, it must follow 
predefined data types. 

●​ If old data is missing this field, it gets a default 
value (e.g., NULL or 0%). 

●​ Queries always return a consistent schema. 
Impact: 

●​ No broken reports. 
●​ The BI team trusts the data. 
●​ New product features launch faster since the data is 

always clean. 

 



 

 
3️⃣ Data Governance: Access Control on Customer Data 
❌ Data Lake Approach (Basic IAM Policies) 
Situation: 
The marketing and finance teams both need customer 
purchase data. 

●​ Marketing: Needs email + purchase history to send 
personalized ads. 

●​ Finance: Needs purchase + payment details for revenue 
tracking. 

With S3-based Data Lake, access control is broad: 
●​ Either everyone gets access or no one gets access. 
●​ If marketing gets access, they also see payment 

details → Privacy risk! 
●​ If finance gets access, they also see customer emails 

→ Unnecessary exposure! 
Impact: 

●​ Increased data leaks & compliance risks (GDPR, PCI 
DSS violations). 

●​ Engineers manually filter data, increasing workload. 
 

✅ Lakehouse Approach (Fine-Grained Access Control) 
Situation: 
With Lakehouse (Databricks Unity Catalog or AWS Lake 
Formation): 

●​ Marketing gets access to CustomerEmail, 
PurchaseHistory but not payment details. 

●​ Finance gets access to PurchaseAmount, PaymentMethod 
but not customer emails. 

●​ Policies are enforced at the table level, so queries 
always return only authorized data. 

Impact: 
●​ No data privacy violations. 
●​ Compliance with GDPR & PCI DSS is maintained. 
●​ No need for manual filtering, reducing engineering 

overhead. 
 

4️⃣ Query Performance: Analyzing Website Click Data 
❌ Data Lake Approach (Slow Queries on S3) 
Situation: 
The company tracks website clicks to analyze which 
products are trending. 

 



 

●​ Data is stored as raw logs in S3 (JSON format). 
●​ Analysts use Athena (SQL on S3) to query click data. 
●​ Since S3 lacks query optimization, even simple 

reports take 20+ minutes. 
Impact: 

●​ Delayed insights, making real-time product 
recommendations impossible. 

●​ Engineers try manually partitioning data, increasing 
complexity. 

 
✅ Lakehouse Approach (Optimized Queries) 
Situation: 
With Lakehouse (Delta Lake / Iceberg / Hudi): 

●​ Data is stored in Parquet format with indexing. 
●​ Queries automatically use partition pruning. 
●​ The same clickstream analysis now runs in seconds 

instead of minutes. 
Impact: 

●​ Real-time recommendations are possible. 
●​ No manual indexing or tuning required. 
●​ Analysts can explore data interactively without 

waiting for hours. 
 

Final Summary: When to Use What? 

Feature 
Data Lake (S3, HDFS, 
GCS) 

Lakehouse (Delta, 
Iceberg, Hudi) 

ACID 
Transactions 

❌ No, inconsistent 
updates 

✅ Yes, prevents 
data corruption 

Schema 
Handling 

❌ Schema-on-Read, 
error-prone 

✅ Schema-on-Write, 
enforced 

Data 
Governance 

❌ Basic IAM & Bucket 
Policies 

✅ Fine-grained 
access control 

Performance 
❌ Slow queries (S3 
scans everything) 

✅ Optimized 
(Indexing & Caching) 

Use Case 
✅ Cheap storage, ML 
pipelines 

✅ Structured 
analytics, BI 

 
Which One Should You Use? 

●​ If you just need a large, scalable storage solution 
for ML & batch processing → Use a Data Lake. 

 



 

●​ If you need structured querying, ACID transactions, 
and governance → Use a Lakehouse. 

💡 For enterprises requiring both raw storage & analytics, 
a hybrid approach (Data Lake + Lakehouse) works best. 🚀 
 
 
 
Here’s how to impose table-level policies using the GUI 
(Console) interface in AWS Lake Formation, Databricks 
Unity Catalog, and Google BigQuery. 

 
1️⃣ AWS Lake Formation (Table-Level & Column-Level Policies) 
Steps to Restrict Access in AWS Lake Formation 
✅ Use Case: Restrict the payment_method column in the 
transactions table. 

1.​Go to AWS Lake Formation Console 
o​ Open AWS Lake Formation 
o​ Navigate to Data Catalog → Databases 
o​ Click on the database containing your table 

(transactions). 
2.​Manage Table Permissions 

o​ Go to Tables → Click on transactions. 
o​ Click Actions → Select Grant. 

3.​Grant Specific Permissions to Roles 
o​ Under IAM users and roles, select:  

▪​ Finance Role → Full Table Access 
▪​ Marketing Role → Select Specific Columns 

o​ Uncheck payment_method for marketing role. 
o​ Click Grant. 

✅ Now, the Marketing team can only see selected columns, 
while Finance has full access. 

 
2️⃣ Databricks Unity Catalog (Table & Column Access) 
Steps to Restrict Access in Databricks 
✅ Use Case: Allow only the finance team to access the 
full table, while marketing sees only a restricted view. 

1.​Go to Databricks Console 
o​ Open Databricks and navigate to Data Explorer. 
o​ Click on Unity Catalog → Databases → sales 

schema. 
2.​Set Table-Level Permissions 

o​ Click on the transactions table. 

 

https://console.aws.amazon.com/lakeformation/
https://databricks.com/


 

o​ Go to Permissions. 
o​ Click Grant. 
o​ Select:  

▪​ Finance Role → Full Access 
▪​ Marketing Role → Custom Access → Uncheck 

payment_method. 
3.​Create a Restricted View for Marketing 

o​ Go to SQL Editor and create a view:  
sql 
CopyEdit 
CREATE VIEW sales.transactions_marketing AS  
SELECT user_id, order_id, purchase_amount  
FROM sales.transactions; 

o​ Go back to Data Explorer → 
transactions_marketing → Grant Access. 

o​ Assign the Marketing Role to this view only. 
✅ Marketing team can now access only the safe view 
without payment details. 
✅ Steps to Enable ACID Transactions in an S3 Data Lake 
Option 1: Apache Iceberg (Recommended for AWS) 
🚀 Best for AWS Lake Formation + Athena + Redshift 
Spectrum 
🔹 Step 1: Convert Your S3 Data to Iceberg Tables 
1️⃣ Register S3 Bucket in AWS Glue & Lake Formation​
2️⃣ Create an Iceberg Table 
sql 
CopyEdit 
CREATE TABLE lakehouse.transactions ( 
    id STRING, 
    amount DOUBLE, 
    status STRING 
) 
USING iceberg 
LOCATION 's3://company-data/lakehouse/'; 
3️⃣ Enable ACID Transactions in Athena 
sql 
CopyEdit 
ALTER TABLE lakehouse.transactions SET TBLPROPERTIES 
('format-version'='2'); 
🔹 Step 2: Perform ACID Transactions 

●​ INSERT (Safe Write)  
sql 

 



 

CopyEdit 
INSERT INTO lakehouse.transactions VALUES ('txn_1', 100.0, 
'pending'); 

●​ UPDATE (No conflicts)  
sql 
CopyEdit 
UPDATE lakehouse.transactions  
SET status = 'completed'  
WHERE id = 'txn_1'; 

●​ DELETE (Transactional Delete)  
sql 
CopyEdit 
DELETE FROM lakehouse.transactions  
WHERE status = 'failed'; 

●​ TIME TRAVEL (See past data)  
sql 
CopyEdit 
SELECT * FROM lakehouse.transactions FOR SYSTEM_TIME AS OF 
TIMESTAMP '2024-03-15 10:00:00'; 
✅ Now, Iceberg ensures your S3-based table has full ACID 
guarantees! 
 
 
 
 
 
 
  
 
 
 
 

 


