DATA WAREHOUSE

Before starting with data warehouse learn what is olap and oltp, olap is online
analytical processing and oltp is online transaction processing. Oltp is
responsible for entering the data into data warehouse, it is responsible for
keeping all the data of transactions, now the data goes to data warehouse
where it structured and it runs multiple queries which is used to get insight s
from data. Olap is responsible for running multidimensional complex queries on
data to have knowledge from it to determine our future decisions and give the
results

Oltp>>>>>data warehouse>>>>>>olap .

® OLTP = Short Notebook
(transactions, updates).

— Keeps quick, real-time records

e Data Warehouse = Encyclopedia 2 — Stores everything in an organized
way, holding data from different sources.

® OLAP = Librarian Q'g\ — Helps analyze, summarize, and fetch the right
insights from the encyclopedia.

ETL
(Extract-Transform-Load)

First data is extracted from various sources and sent to the etl tools(many

available in market space), now the data is cleansed{Data Cleansing (Data
Cleaning) Explained

Data Cleansing is the process of detecting, correcting, and removing inaccurate,
incomplete, or irrelevant data from a dataset to improve its quality and
reliability.}

Now the data is loaded onto a staging area. Now all business rules will be
applied on data.

1)all data should always be in master table record

And certain other steps to further ensure data authenticity and then loaded in
the dimension

In the architecture of a data warehouse, first to etl that from different sources
to either data mart or data warehouse then it is loaded subsequently in
data warehouse or data mart respectively, whichever way you choose
then there is data access layer where you get reporting tool like jasper

Datawarehouse Architecture edureka!
Transactional Sources Data Presentation Layer | Data Access Layer
OLTP
Reporting tools
Source Data
Warehouse |

Mo - [P I | |

e 1 e] Rerortng
L DM 1 L DM 2 ‘
- User
Other DM 3 L rkedre
Sources
e

Data marts are customized reporting from data warehouse or to be uploaded
to data warehouse.

Aws connections

We use connections to connect to different databases.

You have to use an etl tool to ready and clean the data some etl tools are
informatica, Talend, and Apache NiFi other.

Although a lot of issues will be faced when downloading some ETL tools so
AWS GLUE is preferred one as it more reliable available and easy to access.

Data Stores

— L)
- -
Crawler

AW S M gement

A Data Catalog P

i % o
ces €|:| E

1 n

Data Source
Two main features of GLUE are data catalog and spark etl engine.

Data Target

=

Extract

—_

p—
script

Can connect to 70 different data sources, and manage in a centralized way
Main components of AWS GLUE are :

Database
Crawlers
Connections
Tables

Etl jobs
Triggers

e Workflows

TABLES

object withing the aws data catalog that defines the schema of the
unstructured data we added in s3 or db or rds, these table store the metadata
of the actual tables stored in the sources,

Plays a crucial role in organizing the data in a queried way.
S3 — data storage

Dynamo DB- NoSQL of AWS

RDS- SQL of AWS

Crawlers

It is a program that connects to the data source and automatically scans data in
various sources to determine its schema and create metadata tables in aws
glue data catalog

{{so can edit the table schema ourselves after creating databases and tables or
use crawlers to infer automatically if we are not ensuing for precision in
terminal }}

Aws connections
We use connections to connect to different databases to RDS, Dynamo db

Aws glue ETL jobs

Aws visual ETL works the same way as the diagram in in any etl tool like talend
and informatica works, here you take data, therefore choose a source
select what you want to do with data hence choose transform and at last
target of where to store the altered data.

Aws glue can use data sources from s3, redshift and others as sources and even
on premises server

While working on aws glue you also have to setup IAM(Identity & Access
Management) roles and later assign it to that service so that service first
can access the databases and sources to take data and secondly to log
that data in cloudwatch logs,

Now will discuss some other ETL tools in the aws glue

1.) ETL jobs -you can create what you want to do with your data and can do it in
different types, visual, code, etc

2) Connectors- Google BigQuery is available as a connector in AWS Glue to
provide users with the ability to seamlessly move data between Google
BigQuery and other data sources or destinations in AWS, enabling a
more integrated, multi-cloud data processing and analytics workflow.
This can be especially useful for organizations that use services from
both Google Cloud and AWS, or for those that want to leverage the
strengths of both cloud platforms.

3) Data Catalog tables- which stores metadata of your sourced tables.

{METADATA- data about the table itself, not the data stored within it. It includes
information like table names, column names and types, primary and
foreign keys, indexes, constraints, and relationships with other tables.}

4) Workflow- A workflow is a collection of multiple dependent AWS Glue jobs
and crawlers that are run to complete a complex ETL task.

{when you create a job it will be added as one, when you trigger for that job it
will be added as another.}

5)Zero ETL integration- Zero-ETL integration in AWS Glue refers to a set of fully
managed integrations that minimize or eliminate the need to build
traditional ETL pipelines for data movement and replication. Instead of
extracting, transforming, and loading data, zero-ETL allows direct access
to data in-place or replication to destinations like Amazon Redshift and
Amazon SageMaker Lakehouse without the need for intermediate
transformation steps.

6)AWS Glue Stream schema registry- It tracks and record the
schemas of our tables to make sure consistency is
maintained across glue and every data is standardized.

XX->How to connect aws glue to on-prem server of
data-sources

Internet AWS Glue (JDBC Connectivity using VPC)
——
[l []
- Glue
7 .
/ IGW

= e -

‘ ? H

. -

:NAT-GW } 4 A

1 I

1 Public Subnet | i

e o e e e e i 10.10.11.0/24 Postgresal

cew Database
: e . 172.31.0.18

e o ol o o o o \:19“‘.!:‘“ 7
,-/ ENIs: 10.10.10.n -
- E B
: EC2 (5QL Database) ‘ Direct Connect \ y
I 10.10.10.11 : S~ o
| , :
I —
1 S
@
I RDS
'\ 10.10,10.12

\ (10.10.0.0/16)

AWS region

To have this connections completed follow these steps:

JDBC(java database connectivity)

es-data-stores-using-aws-glue/

1) Create a security group for where in inbound rules you allow all tcp for
all

2) For outbound allow all tcp, port 5432 for SQL(your device ip) , DNS udp
and tcp all, and also open it for s3 (so add s3 ip) in ip prefix list as well as
https for

https://aws.amazon.com/blogs/big-data/how-to-access-and-analyze-on-premises-data-stores-using-aws-glue/
https://aws.amazon.com/blogs/big-data/how-to-access-and-analyze-on-premises-data-stores-using-aws-glue/

3) $ curl -s https://ip-ranges.amazonaws.com/ip-ranges.json | jq -r
'.prefixes[] | select(.service=="S3") | select(.region=="us-east-1") |
.ip_prefix"' for ip of s3

4) Then create an iam role as told

5) Go to connection, and add a jdbc connection you will find it, in there
add a jdbc URL which is jdbc:protocol://host:port/db_name

6) Protocol is port is 5432 db _name you will tell ChatGPT it will tell you
what the protocol will be

7) jdbc: postgresql://172.31.0.18:5432/glue_demo

8) open apt firewall ports in on-prem so that data from private subnets
can come to it,

9) now test jdbc connection

10)and other some steps like adding crawler you can learn it from the
website

now to have the etl job create by pyspark code script
Ii_]i"news-hlmepadu
File Edit Search Wiew Encoding Language Settings Tools Macro Run Pluging Window 7
cOHE § i 4 Hih e g2z |FET-TEINEDEe®| =6 KE
[~ d|inew2 :H'Hnew.'- ﬂ|.newl :.'li-("L-'u-t-Hml dlinn-:w'l n.i;-(mmmerﬂm.csv & b= new s E'.ll
1 import sys
from pyspark.context impert SparkContext
from awsglue.context import GlueContext
from awsglue.utils import getResolvedOptions
from awsglue.job impert Job

Argument At patha, and the column to drog

8i input and outpu
args = getResclvedOptions (sys.argv, ['JOB _HAME', ' M KTH'; 'S RATH®, * n

sc = SparkContext ()

glueContext = GlueContext (sc)
spark = glueContext.spark_sessicn
job = Job(glueConvaxt)

Wi 14 job.init (azgs(’ NAME'], args)

Read C5V data from 53 using PySpark DacaFrame
input path = args([’ INFUT PATH")

outpu{_pnth m args(’ UTPUT FATH']
column_to_drop = args('COLUMN P']

Load the C3V data into a PySpark DataFrame
daca_frame = spark.read.option{"header”, “true").csv(input_path)
24 # Drop the specified column
25 data_frame = data frame.drop(column_to drop)
26
27 # Write the DataFrame te 3 in Parquet format
28 data_frame.write.mode ("overwrite") .parquet (output_path)
29
30 job.commit ()

in here whatever has been greyed out you need to specify in details which are
the parameters, where you will specify where to where from , what to etc.

Data marts: smaller versions of data warehouse, they
basically deal with data from limited sources.

Therefore time efficient in creation.

3 types of DM:

1: dependent data mart

Oltp>>>data ware>>>data mart

2: independent data mart
Oltp>>>data mart

3: hybrid data mart

Oltp>>>data mart<<<<data warehouse

While creating Data warehouse there are 2
approaches:

1: top down (dw>>>>dm) (Inmon approach)
2: bottom up(dm>>>dw)

{dw- data warehouse, dm- data mart}

[>>> indicating flow direction of data]

ODS (operational data store)

It is small window of data between oltp and data
warehouse, it keeps real time data, no backing memory,
It is either continuous or snapshot ods.

Some important things in data warehousing
1: dimension table (Table of content)

2: subject (topic of table)

3: dimensions (diff subtopics)

4: attributes (subtopics well defined)

Fact table

A measure that can be manipulated summed or multiplied,
averaged. It contains a dimension a dimension key and a
measure

Such as product product_id unit_sold

Types of facts

: additive facts

semi-additive facts

non-additive facts

: fact less fact

: transaction fact table

snapshot fact table

: accumulated fact table

NouphwpNnR

Slowly Changing Dimensions

Dimensions which don’t change for a long time are slowly
changing dimensions, but when need to be changed they are
amended or edited in 3 types

l:overwrite the old value

2:add a new row

3:add a new column

Conformed dimension: sharing related

Degenerated dimension: not related to anyone

Junk dimension: A junk dimension is essentially a
collection of random transactional codes, flags, and/or
text attributes which are unrelated to any particular
dimension

Role playing dimension:A role-playing dimension is a
dimension table that can be used in multiple contexts,
each with a different meaning. For example, a date
dimension table can be used to create order date, ship
date, and delivery date dimensions.

TYPES OF ANOMALTIE:

1: insert anomaly

2: update anomaly

3: delete anomaly

Therefore, to avoid these anomalies we use the
NORMALIZATION:

Arranging the data in small groups

Remove data redundancies

Updating the table should change only at one place not all
things updates

There must be no impact on speed accuracy and integrity of
the data

HEIRARCHIES:
Where dimensions have a parent child relationship among
each other, 3 types of hierarchies

1
2:
3
1

balanced
unbalanced
Ragged

:->->where same level dimensions have same no. of child

And so, on other could be intercepted that way

3

where levels are skipped

Query/Report Analysus Data mmmg

TOP TIER:
front end tools

OLAP Si
ervers gtpt OLApsewe” MIDDLE TIER:

H D:D ' ' OLAP server
I]

Data marts
Monitoring Admmlstratmn Datawarehouse

. J | | *‘ BOTTOM TIER:
Metadata Repository Eﬂ Datawarehouse server
8/ Extract

Clean

Operational database Transfwm External Sources -

DATA

(MIDDLE TIER)

1.

2.

ROLAP (Relational OLAP)

e Storage: Uses relational databases (RDBMS) to store
data in tables.

® Query Processing: Translates OLAP queries into SQL
and retrieves data dynamically.

e Performance: Slower for complex queries because it
depends on SQL execution in relational databases.

e Scalability: Can handle large datasets efficiently
since it leverages relational databases.

e Example Tools: IBM Coghos, MicroStrategy, SAP
BusinessObjects.

MOLAP (Multidimensional OLAP)

e Storage: Uses a precomputed, multidimensional data
cube to store data.

e Query Processing: Retrieves data directly from
pre-aggregated cubes, making queries much faster.

e Performance: High speed for complex analytical
queries since data is already pre-processed.

e Scalability: Limited by storage, as data cubes can
become very large.

e Example Tools: Microsoft Analysis Services (SSAS),
Oracle Essbase, IBM TM1.

DATA LAKES

A data lake is like a massive data repository, designed to store any kind of data or_big
data which can be structured, semi-structured and unstructured data. And it makes
possible to store data in its original as-it forms.

A data lake holds data volumes before a specific use case has been identified. For
better decision making, there is no need to be concerned about structuring the data
first or having different types of analytics execution from dashboard and visualization,
real time analytics and machine learning for big data processing.

e Analytical Sandboxes: An analytical sandbox layer is secured, testing
environment. This layer provides a dedicated environment within a data lake
architecture, where data scientists, analysts or researchers tests and
experiment and explore the data and derive insights, without compromising
the integrity or quality of the data. Transformed data and raw data both
imported into the analytical sandboxes.

e Data Consumer: As we delve further into the architecture, we reach the Data
consumer layer. At this layer, the data is accessible and available once all
preceding processes have been completed. This is where the data is ready for
analysis and insights generation.

Steps:(by aws lake formation, Athena , s3, glue)
Step 1: Create IAM User
e Search and select below permissions:
o AmazonS3FullAccess
o AmazonAthenaFullAccess
o AWSCloudFormationReadOnlyAccess
o AWSGlueConsoleFullAccess

o CloudWatchLogsReadOnlyAccess

Step 2: Create IAM Role

https://www.geeksforgeeks.org/what-is-big-data/
https://www.geeksforgeeks.org/what-is-big-data/
https://www.geeksforgeeks.org/what-is-data-lake/

After_creating IAM User, now we have to create IAM Role, to catalog the data which is stored
in_/Amazon S3 Bucket for our Data Lake.

Next, select "AWS Service" option. and type "Glue" as the AWS service . add permissions, search for
"PowerUserAccess" policy

Step 3: Create S3 Bucket to Store the Data

We have successfully created our IAM users and IAM role for our AWS Data Lake, now to
store our data we need to create Amazon S3 Bucket. in this demonstration we are uploading
data manually into the S3.

Upload the files

Step 4: Data Lake Set Up using AWS Lake Formation

Our data is ready to ingest into the data lake. now will begin to set up our Data Lake. in data
lake we will create a database. Search and navigate to the AWS Lake formation console.

Add administrator that performs administrative tasks of data lake. click on "Add
Administrators" button to add administrators for your data lake (if you are working with AWS
Lake Formation for the First time, only then "Add administrators" window will pop up).

Administrator is added, now it's time to create a database. you will find the option to create
a database in left hand side menu click on "Databases" and under databases click on "Create
database" button.

Enter Database Name as per your wish. after that you have to
browse and provide your S3 bucket path in which your data is
stored, in the "Location" box.

Also make sure to uncheck the "Use Only IAM Access Control for
New tables in this database" checkbox. after that click on "Create
Database" button. and here you go your database is created in no
time.

Database is created, now we have to register our S3 bucket as a
storage for our data lake. for that find and click on "Data Lake
locations" option from the left-hand side menu, click on "Register
Location", browse and enter S3 bucket path where data is stored.
after giving S3 path, choose IAM role as

" AWSServiceRoleForLakeFormationDataAccess" by default and
click on "Register Location".

Step 5: Data Cataloging using AWS Glue Crawlers

While building the Data Lake, it is essential for data in the data Lake should be catalogued.
using AWS Glue the process of data cataloging becomes easy.

https://www.geeksforgeeks.org/how-to-create-an-iam-user-in-aws/
https://www.geeksforgeeks.org/introduction-to-aws-simple-storage-service-aws-s3/
https://www.geeksforgeeks.org/top-aws-services/

AWS Glue provides ETL (Extract, Transform, Load) service, meaning AWS Glue first transform,
cleanse and organize data coming from multiple data sources before loading data into the
Data Lake. AWS Glue makes data preparation process efficient by automating the ETL jobs.

AWS Glue offers crawlers which automates the data catalog process, for better discovery,
search and query big data.

To create a data catalog in the Database, AWS Glue Crawler will use IAM role which we have
created in previous step.

Go back to the AWS Lake Formation console again, click on "Databases" option you will see
your previously created database. select your database and you will see an "Action" button,
under Action Dropdown menu click on "Grant" option.

On the next window, you have to choose your previously created |IAM Role for "IAM
Users & roles". scroll down you will see Database Permissions field, check boxes
for only "Create Table" and "Alter" permissions and click on "Grant" button.
Navigate to the AWS Lake Formation console, click on "tables" from the menu, you
can check here also table is created.

Step 6: Data Query with Amazon Athena

Amazon Athena is a Query Service offered by AWS, Amazon Athena allows us to analyze data
which stored in Amazon S3 Bucket efficiently using Standard SQL.

When we are working with a large amount of data, we need some sort of querying tool for
analyzing the data or big data, and here is where Amazon Athena comes into play, using
Amazon Athena makes it easy for analyzing the data present in Amazon S3 Bucket.

When we are using Amazon Athena, we don't need to be good at SQL (Structured Query
Language) for querying data, by default Athena supports Standard SQL Query language,
because of that data analysts, data scientists and organizations are able to perform analytics
and derive valuable insights from the data.

Amazon Athena allows user to query data stored in Amazon S3 in its original format.
Navigate to the Amazon Athena Console.

Click on "Query Editor", select Database which we have created in the earlier steps, but
before executing any query we need to provide "Query Result Location" which is Amazon S3
Bucket.

Amazon Athena stores Query Output and Metadata for each Query which executes in "Query
Result Location".

we have to create S3 bucket to store our Query results in this bucket, click on "Set up a query
result location in Amazon S3" tab and provide S3 bucket's path and hit the "Save" button.

We have added the "Query Result Location", Now we can Run our Queries in Amazon
Athena Query Editor.

Run the following MySQL Query and click on "Run" button.

https://www.geeksforgeeks.org/introduction-to-aws-glue-etl/
https://www.geeksforgeeks.org/aws-athena/
https://www.geeksforgeeks.org/sql-tutorial/

(by s3, Athena, aws cli, docker or gui)

Go to gary Stradford youtube, amazon.
DATA LAKEHOUSE

Building reliable, performant data pipelines with £\ DELTA LAKE

Improve Data Quality

oxo
oox l_‘ [@ |'|
L ESJ Raw Data —=
Batch Bl
[1
~ Raw Filtered, Cleaned, Business-Level
~ . Y
(f /) Integration Augmented Aggregates r(d 1l
f[i N3
(s} (o] r
Streaming ML
“Landing zone" for raw data, no Define structure, enforce schema,

Deliver continuously updated, clean

schema needed data to downstream users and apps

evolve schema as needed

Data Lake Architecture

The following diagram illustrates the AWS Data Lake Architecture and its components are discussed
clearly in the below sections:

Data Sources Data Ingestion Data Storage & Processing Data Consumers
Gather data from multiple Power Bl
data sources and import
into the data Lake.

Streaming

Analytics

— Real-Time Mode
— -
| Data
Science
Batch Mode

Machine

- —
Data Governance and Security

(Fig.) MEDALLION ARCH.

Bronze layer (raw data)

The Bronze layer is where we land all the data from external source systems. The table structures in
this layer correspond to the source system table structures "as-is," along with any additional
metadata columns that capture the load date/time, process ID, etc. The focus in this layer is quick

Change Data Capture and the ability to provide an historical archive of source (cold storage), data
lineage, auditability, reprocessing if needed without rereading the data from the source system.

Silver layer (cleansed and conformed data)

In the Silver layer of the lakehouse, the data from the Bronze layer is matched, merged, conformed
and cleansed ("just-enough") so that the Silver layer can provide an "Enterprise view" of all its key
business entities, concepts and transactions. (e.g. master customers, stores, non-duplicated
transactions and cross-reference tables).

The Silver layer brings the data from different sources into an Enterprise view and enables
self-service analytics for ad-hoc reporting, advanced analytics and ML. It serves as a source for
Departmental Analysts, Data Engineers and Data Scientists to further create projects and analysis to
answer business problems via enterprise and departmental data projects in the Gold Layer.

In the lakehouse data engineering paradigm, typically the ELT methodology is followed vs. ETL -
which means only minimal or "just-enough" transformations and data cleansing rules are applied
while loading the Silver layer. Speed and agility to ingest and deliver the data in the data lake is
prioritized, and a lot of project-specific complex transformations and business rules are applied while
loading the data from the Silver to Gold layer. From a data modeling perspective, the Silver Layer has
more 3rd-Normal Form like data models. Data Vault-like, write-performant data models can be used
in this layer.

Gold layer (curated business-level tables)

Data in the Gold layer of the lakehouse is typically organized in consumption-ready "project-specific"
databases. The Gold layer is for reporting and uses more de-normalized and read-optimized data
models with fewer joins. The final layer of data transformations and data quality rules are applied
here. Final presentation layer of projects such as Customer Analytics, Product Quality Analytics,
Inventory Analytics, Customer Segmentation, Product Recommendations, Marking/Sales Analytics
etc. fit in this layer. We see a lot of Kimball style star schema-based data models or Inmon style Data
marts fit in this Gold Layer of the lakehouse.

So you can see that the data is curated as it moves through the different layers of a lakehouse. In
some cases, we also see that lot of Data Marts and EDWs from the traditional RDBMS technology
stack are ingested into the lakehouse, so that for the first time Enterprises can do "pan-EDW"
advanced analytics and ML - which was just not possible or too cost prohibitive to do on a traditional
stack. (e.g. loT/Manufacturing data is tied with Sales and Marketing data for defect analysis or health
care genomics, EMR/HL7 clinical data markets are tied with financial claims data to create a
Healthcare Data Lake for timely and improved patient care analytics.)

What is an ACID Transaction? ¢

An ACID transaction ensures that database operations are reliable, consistent, and fault-tolerant.
ACID stands for:

_1JA - Atomicity @

"All or nothing" rule: Either the entire transaction completes successfully, or nothing
happens.

If one part of the transaction fails, the whole operation is rolled back.

Example: In banking, if you transfer money, both debit & credit must happen together—or
neither happens.

2JC - Consistency |74

The database must move from one valid state to another.
No corrupted or invalid data should be stored.

Example: If a transaction follows business rules (e.g., no negative balances), consistency
ensures the rules are never broken.

_3)I - Isolation

Multiple transactions running at the same time should not interfere with each other.
Ensures transactions are independent, even under high concurrency.

Example: If two users buy the last ticket at the same time, only one should succeed.

_4)D - Durability [

Once a transaction is committed, it is permanently saved, even if the system crashes.
Ensures no data loss after a successful transaction.

Example: If you book a flight and the system crashes, your booking should still exist after
restart.

ACID Transactions in a Lakehouse (Delta Lake, Iceberg, Hudi)
Traditional data lakes lack ACID transactions, making them unreliable for structured
analytics.

A Lakehouse (using Delta Lake, Apache Iceberg, etc.) adds ACID properties to big data
storage, ensuring:

{74 Reliable data updates & deletes (important for GDPR compliance).

{4 Concurrency control, preventing dirty reads & write conflicts.

{74 Faster real-time analytics, like a traditional database.

Would you like an example of ACID in Databricks, Delta Lake, or SQL? %’

THE MEDALLION ARCH IS FOR LAKEHOUSE. IT IS BASICALLY TRANSITION OF DATA LAKES IN
LAKEHOUSE LIKE BRONZE TO SILVER- GOLD

{74 What Makes a True Lakehouse? [74

A Lakehouse is more than just a data lake with SQL—it must combine the scalability of a data lake
with the governance and performance of a data warehouse.

@ Key Features of a True Lakehouse

_1)Open & Scalable Storage (Like a Data Lake)

v/ Stores structured, semi-structured, and unstructured data (JSON, Parquet, CSV, images, etc.).
v/ Uses cheap cloud storage (S3, ADLS, GCS) instead of expensive warehouse storage.
v/ Schema flexibility — Can handle raw, unstructured data without strict schemas.

_2JACID Transactions (Like a Data Warehouse)

v/ Ensures data consistency & reliability (Insert, Update, Delete safely).
v/ Prevents data corruption & ensures rollback if something fails.
v/ Unlike traditional data lakes, a Lakehouse supports transactions like a database.

3)Schema Enforcement & Governance

v/ Unlike data lakes (schema-on-read), a Lakehouse supports schema-on-write.
v/ Ensures quality, validation, and versioning of data as it moves from raw — refined.
v’ Role-based access control (RBAC) for security and compliance (GDPR, HIPAA).

@Performance & Indexing (Like a Warehouse)

v/ Uses caching, indexing, and optimized storage to speed up queries.
v/ Unlike raw data lakes (which are slow), a Lakehouse supports fast analytics.
v/ Supports Bl tools, dashboards, and ML workloads (Databricks SQL, Snowflake, etc.).

_5)Supports BI, Al, & ML in One Place
v/ Unlike a traditional warehouse (only for structured data), a Lakehouse supports:
e Business Intelligence (BI) with SQL.
e Machine Learning (ML) with notebooks and Python.

e Real-time analytics & streaming.
v/ Removes the need for separate Data Lake + Warehouse, simplifying architecture.

A quick primer on lakehouses

A lakehouse is a data platform architecture paradigm that combines the best features of data lakes and data
warehouses. A modern lakehouse is a highly scalable and performant data platform hosting both raw and prepared
data sets for quick business consumption and to drive advanced business insights and decisions. It breaks data silos
and allows seamless, secure data access to authorized users across the enterprise on one platform.

<
databricks
Lakehouse Platform

Data Data Data Data Science
Warehousing Engineering Streaming and ML

Unity Catalog
ine-grainec

nce for data and Al

Delta Lake
Data reliability and performance

Cloud Data Lake

All structured and unstructured data

I Microsot AWS A GoogeeClowd

ACID Compliance: Handling Refunds & Order Updates

X Data Lake Approach (S3-based Storage)

Situation:

A customer orders a laptop (Order ID: 12345) but cancels
it 5 minutes later.

e The order data is stored in S3 as a raw JSON file.

e The refund system queries the order database while a
batch job is still processing cancellations.

e Since S3 does not support transactions, some queries
return "Order 12345 exists" while others return
"Order 12345 not found" at the same time!

Impact:

e The finance team processes a refund twice, leading to
a financial error.

e Analysts get incorrect revenue reports, showing the
laptop sale even though it was refunded.

74 Lakehouse Approach (Delta Lake / Apache Iceberg)
Situation:

With Lakehouse, the data is stored in Delta Lake on top of
S3.

e ACID transactions ensure that updates are atomic.

e A rollback mechanism prevents double refunds.

e The refund system sees a consistent view of the order
data at any time.

Impact:

e No financial errors.

e Analysts get the correct revenue reports.

e Customer support sees only valid, up-to-date order
details.

Schema Enforcement: Handling Product Catalog Changes
Y Data Lake Approach (Schema-on-Read)
Situation:
The product catalog team updates the product schema,
adding a new field:
e 0Old schema: ProductID, Name, Price, Stock
e New schema: ProductID, Name, Price, Stock, Discount
Since the schema is applied only when queried, analysts
running reports get mixed data formats:
e Some products show the new "Discount” column, others
do not.
e Reports fail due to missing columns or data type
mismatches.
Impact:
e Business reports show incomplete discounts.
e The analytics team needs to write custom scripts to
handle schema mismatches.

¥4 Lakehouse Approach (Schema-on-Write)
Situation:
With a Lakehouse, schema changes are validated before
ingestion.
e If a new "Discount"” column is added, it must follow
predefined data types.
e If old data is missing this field, it gets a default
value (e.g., NULL or 0%).
e Queries always return a consistent schema.
Impact:
e No broken reports.
e The BI team trusts the data.
e New product features launch faster since the data is
always clean.

ED Data Governance: Access Control on Customer Data
Y Data Lake Approach (Basic IAM Policies)
Situation:
The marketing and finance teams both need customer
purchase data.
e Marketing: Needs email + purchase history to send
personalized ads.
e Finance: Needs purchase + payment details for revenue
tracking.
With S3-based Data Lake, access control is broad:
e Either everyone gets access or no one gets access.
e If marketing gets access, they also see payment
details — Privacy risk!
e If finance gets access, they also see customer emails
— Unnecessary exposure!
Impact:
e Increased data leaks & compliance risks (GDPR, PCI
DSS violations).
e Engineers manually filter data, increasing workload.

74 Lakehouse Approach (Fine-Grained Access Control)
Situation:
With Lakehouse (Databricks Unity Catalog or AWS Lake
Formation):
e Marketing gets access to CustomerEmail,
PurchaseHistory but not payment details.
e Finance gets access to PurchaseAmount, PaymentMethod
but not customer emails.
e Policies are enforced at the table level, so queries
always return only authorized data.
Impact:
e No data privacy violations.
e Compliance with GDPR & PCI DSS is maintained.
e No need for manual filtering, reducing engineering
overhead.

Query Performance: Analyzing Website Click Data
Y Data Lake Approach (Slow Queries on S3)
Situation:

The company tracks website clicks to analyze which
products are trending.

e Data is stored as raw logs in S3 (JSON format).

e Analysts use Athena (SQL on S3) to query click data.

e Since S3 lacks query optimization, even simple
reports take 20+ minutes.

Impact:

e Delayed insights, making real-time product
recommendations impossible.

e Engineers try manually partitioning data, increasing
complexity.

%4 Lakehouse Approach (Optimized Queries)
Situation:
With Lakehouse (Delta Lake / Iceberg / Hudi):
e Data is stored in Parquet format with indexing.
e Queries automatically use partition pruning.
e The same clickstream analysis now runs in seconds
instead of minutes.
Impact:
e Real-time recommendations are possible.
e No manual indexing or tuning required.
e Analysts can explore data interactively without
waiting for hours.

Final Summary: When to Use What?
Data Lake (S3, HDFS, Lakehouse (Delta,

Feature GCS) Iceberg, Hudi)

ACID X No, inconsistent 4 Yes, prevents

Transactions updates data corruption

Schema)(Schema-on-Read, ﬂl Schema-on-Write,

Handling error-prone enforced

Data X Basic IAM & Bucket [%4 Fine-grained

Governance Policies access control

Performance X Slow queries (S3 v Optimized .
scans everything) (Indexing & Caching)
"4 Cheap storage, ML ['4 Structured

Use Case p-ipelin(I:S - galytics, BI

Which One Should You Use?
e If you just need a large, scalable storage solution
for ML & batch processing — Use a Data Lake.

e If you need structured querying, ACID transactions,
and governance — Use a Lakehouse.
¢ For enterprises requiring both raw storage & analytics,

<

a hybrid approach (Data Lake + Lakehouse) works best. «’

Here’s how to impose table-level policies using the GUI
(Console) interface in AWS Lake Formation, Databricks
Unity Catalog, and Google BigQuery.

AWS Lake Formation (Table-Level & Column-Level Policies)
Steps to Restrict Access in AWS Lake Formation
74 use Case: Restrict the payment_method column in the
transactions table.
1. Go to AWS Lake Formation Console
o Open AWS Lake Formation
o Navigate to Data Catalog — Databases
o Click on the database containing your table
(transactions).
2. Manage Table Permissions
o Go to Tables — Click on transactions.
o Click Actions — Select Grant.
3. Grant Specific Permissions to Roles
o Under IAM users and roles, select:
= Finance Role — Full Table Access
= Marketing Role — Select Specific Columns
o Uncheck payment_method for marketing role.
o Click Grant.
%4 Now, the Marketing team can only see selected columns,
while Finance has full access.

Databricks Unity Catalog (Table & Column Access)
Steps to Restrict Access in Databricks
74 use case: Allow only the finance team to access the
full table, while marketing sees only a restricted view.
1. Go to Databricks Console
o Open Databricks and navigate to Data Explorer.
o Click on Unity Catalog — Databases — sales
schema.
2. Set Table-Level Permissions
o Click on the transactions table.

https://console.aws.amazon.com/lakeformation/
https://databricks.com/

o Go to Permissions.
o Click Grant.
o Select:
= Finance Role — Full Access
= Marketing Role — Custom Access — Uncheck
payment_method.
3. Create a Restricted View for Marketing
o Go to SQL Editor and create a view:
sql
CopyEdit
CREATE VIEW sales.transactions_marketing AS
SELECT user_id, order_id, purchase_amount
FROM sales.transactions;
o Go back to Data Explorer —
transactions_marketing — Grant Access.
o Assign the Marketing Role to this view only.
"4 Marketing team can now access only the safe view
without payment details.
V4 steps to Enable ACID Transactions in an S3 Data Lake
Option 1: Apache Iceberg (Recommended for AWS)
%’ Best for AWS Lake Formation + Athena + Redshift
Spectrum
¢ Step 1: Convert Your S3 Data to Iceberg Tables
/1) Register S3 Bucket in AWS Glue & Lake Formation
Create an Iceberg Table
sql
CopyEdit
CREATE TABLE lakehouse.transactions (
id STRING,
amount DOUBLE,
status STRING
)
USING iceberg
LOCATION 's3://company-data/lakehouse/"';
Enable ACID Transactions in Athena
sql
CopyEdit
ALTER TABLE lakehouse.transactions SET TBLPROPERTIES
('format-version'='2");
¢ Step 2: Perform ACID Transactions
e INSERT (Safe Write)
sql

CopyEdit
INSERT INTO lakehouse.transactions VALUES ('txn_1', 100.0,
'pending');
e UPDATE (No conflicts)
sql
CopyEdit
UPDATE lakehouse.transactions
SET status = 'completed'
WHERE id = 'txn_1"';
e DELETE (Transactional Delete)
sql
CopyEdit
DELETE FROM lakehouse.transactions
WHERE status = 'failed’;
e TIME TRAVEL (See past data)
sql
CopyEdit
SELECT * FROM lakehouse.transactions FOR SYSTEM TIME AS OF
TIMESTAMP '2024-03-15 10:00:00°';
%4 Now, Iceberg ensures your S3-based table has full ACID
guarantees!

