
Sa
tvi
k-M

ish
ra

AWS site to site VPN
(virtual Private Network)

Other than vgw(virtual gateway) we can also have

tgw(transit gateway)

A daemon is a computer program that runs in the background of an

operating system (OS) without the user's direct interaction. Daemons

are often found in Unix and Linux operating systems. They are

typically started when the system starts and run until the system

stops.

Daemons perform a variety of tasks, including: Managing system

resources, Handling network connections, Providing services for

other programs, Automating routine tasks, and Ensuring the

availability of critical service

What are the common issues encountered during the installation and

service startup of StrongSwan, OpenSwan, and Libreswan, and how can

they be resolved?

--The challenges you faced with installing and starting the services of

strongSwan, OpenSwan, and LibreSwan in your project likely stem from

the complexities associated with VPN software setup, dependency

management, and compatibility. Here’s a theoretical breakdown of why

such issues occur:

1. Installation Issues

Sa
tvi
k-M

ish
ra

a) Dependency Conflicts

●​ Problem: These VPN services require specific dependencies (e.g.,

libipsec, libgcrypt, libevent) to function. Missing or conflicting

versions of these libraries can cause installation failures.

●​ Reason: Package managers like apt, yum, or dnf might not resolve

dependencies correctly, especially if multiple software needs

conflicting versions of the same library.

b) Kernel Compatibility

●​ Problem: These services rely on kernel-level IPsec stack

implementations.

●​ Reason: If the kernel version is incompatible or lacks proper

modules (like xfrm_user or xfrm_algo), the installation may fail or

result in errors when starting the service.

c) Package Source

●​ Problem: Using incorrect or outdated repositories.

●​ Reason: Official repositories may not have the latest version, and

third-party repositories can have incomplete or corrupted packages.

2. Service Startup Issues

a) Configuration Errors

●​ Problem: Default or misconfigured settings in the ipsec.conf or

ipsec.secrets files.

●​ Reason: These files define how the VPN daemon connects and

authenticates. Missing parameters or syntax errors prevent the

service from starting.

b) Port Conflicts

Sa
tvi
k-M

ish
ra

●​ Problem: Ports required by these services (e.g., UDP 500 for

ISAKMP/IKE, UDP 4500 for NAT traversal) might already be in use.

●​ Reason: Another service (like a previous VPN setup or another

instance of strongSwan/OpenSwan) is occupying these ports.

c) Service Management Confusion

●​ Problem: Mismanagement of systemd or init.d scripts for starting,

stopping, and enabling services.

●​ Reason: Mixing manual starts with system-managed services

(systemctl, service) can lead to conflicts or missing runtime

dependencies.

3. Version or Build Issues

a) OpenSwan vs. LibreSwan vs. StrongSwan

●​ Problem: Differences in feature sets or configurations.

o​OpenSwan: Older and less frequently updated.

o​LibreSwan: Actively developed with better SELinux support

but stricter configuration requirements.

o​StrongSwan: Modular and modern but slightly more complex

to configure.

●​ Reason: Each software has specific nuances in installation and

runtime requirements.

b) Source Build Errors

●​ Problem: Compiling from source can lead to issues.

●​ Reason: Missing build tools (gcc, make, cmake) or incorrect

configuration flags during the compilation process.

Sa
tvi
k-M

ish
ra

4. System Resource or Compatibility Issues

a) Insufficient Permissions

●​ Problem: Lack of root privileges or incorrectly configured sudo

permissions.

●​ Reason: Services require access to low-level networking, which

needs administrative rights.

b) Firewall Rules

●​ Problem: Firewalls like iptables or firewalld block necessary ports or

protocols.

●​ Reason: VPN services need specific rules to allow IPsec traffic.

c) SELinux or AppArmor

●​ Problem: Security frameworks block VPN service actions.

●​ Reason: SELinux/AppArmor policies may restrict execution or

networking operations.

5. Post-Installation Configuration Issues

a) Unresolved Routes

●​ Problem: Static or dynamic routes not configured properly in

ipsec.conf or the OS route table.

●​ Reason: IPsec tunnels require proper routing definitions for traffic

to flow.

b) Authentication Failures

●​ Problem: Errors in certificate/key-based or PSK-based

authentication setup.

Sa
tvi
k-M

ish
ra

●​ Reason: Misaligned cryptographic parameters or missing

authentication credentials.

c) Logging and Debugging

●​ Problem: Difficulty understanding error logs.

●​ Reason: VPN services often produce verbose but cryptic logs,

requiring detailed knowledge of IPsec protocols to troubleshoot

effectively.

How to Mitigate These Issues

1.​Pre-Installation Checks

o​Verify dependencies and kernel

compatibility.

o​Ensure no conflicting services are running.

2.​Use Official Documentation

o​Follow step-by-step guides for the specific

VPN software version.

3.​Debugging Tools

o​Use logs from /var/log/ (e.g., syslog,

auth.log) to trace errors.

4.​Testing

o​Validate using ipsec status or ipsec verify

commands after setup.

Sa
tvi
k-M

ish
ra

5.​Community Support

o​Forums and GitHub repositories often

have solutions for common problems.

By understanding these potential pitfalls, you can

streamline your troubleshooting process for these

VPN service installations and startups.

strongSwan, OpenSwan, and LibreSwan are

implementations of IPsec (Internet Protocol

Security), a protocol suite used to secure Internet

communications by authenticating and encrypting

IP packets. These tools are commonly used for

setting up VPNs (Virtual Private Networks) and

other secure network tunnels. Here's an overview:

1. What is IPsec?

●​IPsec is a protocol suite designed for secure

communication over IP networks. It ensures:

o​Data Integrity: Verifies that data has not

been altered during transit.

o​Data Confidentiality: Encrypts data to

prevent unauthorized access.

Sa
tvi
k-M

ish
ra

o​Authentication: Confirms the identity of

the communicating parties.

o​Secure Key Exchange: Uses protocols like

IKE (Internet Key Exchange) to establish

secure session keys.

IPsec is widely used for:

●​VPNs to connect remote sites or users

securely.

●​Encrypting data between devices over the

public internet.

●​Hybrid cloud and on-premises connectivity.

2. strongSwan

●​Overview: A modern, open-source

IPsec-based VPN solution.

●​Key Features:

o​Implements IKEv1 and IKEv2 (Internet Key

Exchange protocols).

o​Modular design with plugins for additional

features.

Sa
tvi
k-M

ish
ra

o​Strong focus on security, supporting

robust cryptographic algorithms.

●​Usage: Ideal for road-warrior (remote user)

VPNs, site-to-site VPNs, and connecting to

cloud services.

3. OpenSwan

●​Overview: One of the older IPsec

implementations for Linux, derived from the

original FreeS/WAN project.

●​Key Features:

o​Supports IKEv1.

o​Offers basic VPN functionalities but is not

actively developed anymore.

●​Usage: Previously popular for setting up

Linux-based VPNs but now largely replaced by

LibreSwan or strongSwan.

4. LibreSwan

Sa
tvi
k-M

ish
ra

●​Overview: A fork of OpenSwan, actively

maintained and developed to provide

enhanced features and better compatibility.

●​Key Features:

o​Supports IKEv1 and IKEv2.

o​Better integration with SELinux and

modern Linux distributions.

o​Focused on security, with regular updates

to patch vulnerabilities.

●​Usage: Often used in enterprise Linux systems

for site-to-site VPNs and secure remote

access.

Why Use These?

These tools are essential for creating secure

connections between networks or devices,

especially when:

●​Transmitting sensitive data over public

networks.

●​Connecting geographically dispersed offices

securely (site-to-site VPN).

Sa
tvi
k-M

ish
ra

●​Allowing remote users to access internal

resources securely (road-warrior setup).

●​Creating hybrid cloud setups where

on-premises infrastructure connects to cloud

environments.

How They Differ

Feature strongSwan OpenSwan LibreSwan

Actively

Maintained
✅ Yes ❌ No ✅ Yes

Supports

IKEv2
✅ Yes ❌ No ✅ Yes

Security

Focus
🔒 Strong 🔒 Basic 🔒 Strong

Modern

Use Cases

Cloud/Hybrid

VPNs

Basic

Site-to-Site

Enterprise

Integration

In summary, these tools are critical for securely

implementing IPsec-based VPNs in Linux

environments. strongSwan is often preferred for

its modern features, while LibreSwan is a good

choice for enterprise setups.

Sa
tvi
k-M

ish
ra

What steps are typically taken to resolve each

type of issue, and what key elements should be

checked during the troubleshooting process?

--To overcome issues with strongSwan, OpenSwan, or LibreSwan, it’s

essential to systematically address the potential causes of installation,

configuration, and runtime problems. Here's a structured guide with steps

to resolve each kind of issue:

1. Installation Issues

a) Dependency Conflicts

●​What to Check:

o​Ensure required dependencies (libipsec,

libgcrypt, openssl) are installed.

o​Verify versions of the dependencies are

compatible.

●​Steps to Resolve:

0.​Use package managers (apt, yum, dnf) to

install required libraries:

sudo apt-get install -y libgcrypt-dev libssl-dev

1.​Check for missing dependencies using:

ldd /usr/sbin/ipsec

Sa
tvi
k-M

ish
ra

2.​Resolve conflicts by

upgrading/downgrading libraries as

needed.

b) Kernel Compatibility

●​What to Check:

o​Ensure the kernel supports IPsec with

required modules (xfrm_user, xfrm_algo).

o​Check the kernel version compatibility

with the VPN software.

●​Steps to Resolve:

0.​Verify the required modules are loaded:

lsmod | grep xfrm

1.​Install missing modules:

modprobe xfrm_user

2.​Upgrade the kernel if needed.

c) Repository and Source

●​What to Check:

o​Ensure you are using the official

repositories or reliable source builds.

Sa
tvi
k-M

ish
ra

●​Steps to Resolve:

0.​Add the official repository for your tool:

sudo add-apt-repository ppa:strongswan/ppa

sudo apt-get update

sudo apt-get install strongswan

1.​If compiling from source:

▪​ Download from the official website.

▪​ Install build tools: gcc, make, etc.

2. Service Startup Issues

a) Configuration Errors

●​What to Check:

o​Verify correctness of ipsec.conf and

ipsec.secrets configuration files.

o​Look for syntax errors or missing

parameters.

●​Steps to Resolve:

Sa
tvi
k-M

ish
ra

0.​Use example configurations provided in

the official documentation.

1.​Test the configuration syntax:

ipsec checkconfig

b) Port Conflicts

●​What to Check:

o​Ensure ports UDP 500 (IKE) and UDP 4500

(NAT-T) are available.

●​Steps to Resolve:

0.​Check if ports are occupied:

sudo netstat -tuln | grep 500

●​What to Check:

o​Ensure the service is properly enabled and

running.

●​Steps to Resolve:

0.​Restart the service:

sudo systemctl restart strongswan

1.​Enable it on boot:

sudo systemctl enable strongswan

Sa
tvi
k-M

ish
ra

Authentication Failures

●​What to Check:

o​Verify that the shared keys (PSK),

certificates, or credentials are correctly

configured.

●​Steps to Resolve:

0.​For PSK-based VPNs:

▪​ Add the key to ipsec.secrets:

●​192.168.1.1 192.168.2.1 : PSK "your-secret-key"

▪​

Firewall and Security Contexts

●​What to Check:

o​Ensure that firewalls (e.g., iptables,

firewalld) allow IPsec traffic.

o​Verify SELinux/AppArmor policies are not

blocking the service.

●​Steps to Resolve:

Sa
tvi
k-M

ish
ra

0.​Update firewall rules:

bash

sudo iptables -A INPUT -p udp --dport 500 -j ACCEPT

sudo iptables -A INPUT -p udp --dport 4500 -j ACCEPT

1.​Temporarily disable SELinux for testing:

bash

sudo setenforce 0

d) Logs and Debugging

●​What to Check:

o​Analyze logs for error messages.

●​Steps to Resolve:

0.​Check logs for errors:

sudo journalctl -u strongswan

1.​Increase debugging level in ipsec.conf:

conf

charondebug="ike 2, knl 2, cfg 2"

Test Traffic Flow

Sa
tvi
k-M

ish
ra

●​Send traffic through the VPN and confirm

encryption using:

bash

tcpdump -n -i <interface> esp

journalctl is a command-line tool used for

querying and viewing logs that are managed by

systemd's journal on Linux systems. It provides a

centralized logging system that collects and stores

logs from various services and the kernel. The logs

are stored in binary format and can be accessed

through journalctl, offering various filtering and

searching options.

. Persistent Logging

By default, journalctl stores logs in volatile

memory (RAM) unless configured to store logs on

disk. To enable persistent logging:

●​Edit the /etc/systemd/journald.conf file:

o​Set Storage=persistent to store logs on

disk.

Sa
tvi
k-M

ish
ra

o​Restart the systemd-journald service:

sudo systemctl restart systemd-journald

1.​Troubleshooting Service Issues: If you're

encountering issues with strongSwan, you can

check its logs:

journalctl -u strongswan

1.​Checking Logs for VPN Connection Failures: If

a VPN connection is failing, you might want to

see logs from the VPN service with more

detailed information (e.g., debugging mode):

journalctl -u strongswan -p debug

2.​Monitoring Kernel Messages: You can view

kernel messages (e.g., network stack issues,

hardware problems) by checking logs at the

kernel level:

journalctl -k

Sa
tvi
k-M

ish
ra

1.​Error Tracing:

o​Debugging logs are especially useful for

tracing the source of a problem. If there is

a failure (e.g., connection issue,

authentication failure), you can see the

exact sequence of events that led to the

issue.

2.​Configuration Issues:

o​It can show misconfigurations in real-time

as the service tries to apply settings. For

instance, if the wrong certificates are

loaded or if the service fails to apply a

setting in ipsec.conf, debugging mode will

log those events.

3.​For a service like strongSwan running in

debugging mode, you might see output like

this in the logs:

4.​ charon: 09[NET] sending packet: from 192.168.1.1[500] to
192.168.2.1[500]

5.​ charon: 09[NET] received packet: from 192.168.2.1[500] to
192.168.1.1[500]

6.​ charon: 09[ENC] parsed IKE_SA_INIT request

Sa
tvi
k-M

ish
ra

7.​ charon: 09[ENC] found peer's public key
8.​ charon: 09[IKE] peer's public key: <public_key_here>
9.​ charon: 09[CFG] looking for matching configuration for

192.168.1.1... failed
10.​This shows the exact flow of packets, what

was received and sent, and any failures (e.g., a

configuration mismatch).

11.​

charon: 09[CFG] looking for matching

configuration for 192.168.1.1... failed

indicates that strongSwan was attempting to find

a matching configuration for the IP address

192.168.1.1 (probably the client or peer) but

failed. This message gives you a clue that the

system was unable to find the correct

configuration for this IP, which could be due to

various reasons.

How This Helps You Find the Problem:

Configuration Mismatch: Missing or Incorrect

Entries in the Configuration File:

Sa
tvi
k-M

ish
ra

Wrong VPN Configuration for the IP

Range/Subnet:

▪​ ipsec.conf: Make sure that the server

configuration includes the correct

peer settings for the client IP

192.168.1.1.

2.​Missing or Incorrect Authentication

Credentials:

o​What to Check:

▪​ Ensure that the correct pre-shared

keys (PSKs) or certificate

configurations are set for the peer IP.

▪​ Verify that the certificates or PSK

entries are valid and match both sides

of the VPN connection.

conn myvpn

 left=192.168.1.1 # Your local VPN server

Sa
tvi
k-M

ish
ra

 right=192.168.2.1 # Remote VPN client or peer

 authby=secret # or authby=rsasig for certificates

 keyexchange=ikev2

 leftsubnet=0.0.0.0/0

 rightsubnet=0.0.0.0/0
 ikelifetime=60m
 keylife=20m
 rekey=yes
Local endpoint: This is where you are

currently working — the local machine or

server on which you are configuring

strongSwan.

Remote endpoint: This is the other end of the

VPN connection — the other server, client, or

endpoint that you are trying to connect to

The Diffie-Hellman (DH) Group is a

cryptographic concept used in key exchange

protocols to securely exchange cryptographic

keys over a public channel

Sa
tvi
k-M

ish
ra

Common Diffie-Hellman Groups:

Each group has a different level of security, and they are identified by

numbers. Here are a few examples of Diffie-Hellman Groups:

1.​ Group 1 (768-bit prime modulus) - Weak and outdated.

2.​ Group 2 (1024-bit prime modulus) - Moderate security, but still

considered insecure for long-term security.

3.​ Group 5 (1536-bit prime modulus) - Stronger security.

4.​ Group 14 (2048-bit prime modulus) - Stronger security, commonly

used in modern VPNs.

5.​ Group 15 (3072-bit prime modulus) - Even stronger security,

suitable for very high security.

6.​ Group 16 (4096-bit prime modulus) - Very high security, used for

very sensitive communications.

Choosing the Right Diffie-Hellman Group:

●​ Stronger Groups (e.g., Group 14, Group 15, Group 16) provide

better security but require more computational resources and

time to compute the shared secret.

●​ Weaker Groups (e.g., Group 1, Group 2) are faster but less secure.

These are often considered outdated and are no longer

recommended for use.

Diffie-Hellman Groups in strongSwan:

In strongSwan, you can specify which DH group to use in your ipsec.conf

file for key exchange:

conn myvpn

 keyexchange=ikev2

 ike=aes256-sha2_256-modp2048 # Specifies DH Group 14 (2048-bit)

 esp=aes256-sha2_256

Sa
tvi
k-M

ish
ra

Here, modp2048 specifies that Group 14 is being used for the key

exchange.

