AWS site to site VPN

(virtual Private Network)

Other than vgw(virtual gateway) we can also have
tgw(transit gateway)

A daemon is a computer program that runs in the background of an
operating system (OS) without the user's direct interaction. Daemons
are often found in Unix and Linux operating systems. They are
typically started when the system starts and run until the system
stops.

Daemons perform a variety of tasks, including: Managing system
resources, Handling network connections, Providing services for
other programs, Automating routine tasks, and Ensuring the
availability of critical service

What are the common issues encountered during the installation and
service startup of StrongSwan, OpenSwan, and Libreswan, and how can

they be resolved?

-=The challenges you faced with installing and starting the services of

strongSwan, OpenSwan, and LibreSwan in your project likely stem from
the complexities associated with VPN software setup, dependency
management, and compatibility. Here’s a theoretical breakdown of why
such issues occur:

1. Installation Issues

a) Dependency Conflicts

e Problem: These VPN services require specific dependencies (e.g.,
libipsec, libgcrypt, libevent) to function. Missing or conflicting
versions of these libraries can cause installation failures.

e Reason: Package managers like apt, yum, or dnf might not resolve
dependencies correctly, especially if multiple software needs
conflicting versions of the same library.

b) Kernel Compatibility

e Problem: These services rely on kernel-level IPsec stack
implementations.

® Reason: If the kernel version is incompatible or lacks proper
modules (like xfrm_user or xfrm_algo), the installation may fail or
result in errors when starting the service.

c) Package Source

e Problem: Using incorrect or outdated repositories.

e Reason: Official repositories may not have the latest version, and
third-party repositories can have incomplete or corrupted packages.

2. Service Startup Issues

a) Configuration Errors

e Problem: Default or misconfigured settings in the ipsec.conf or
ipsec.secrets files.

® Reason: These files define how the VPN daemon connects and
authenticates. Missing parameters or syntax errors prevent the
service from starting.

b) Port Conflicts

e Problem: Ports required by these services (e.g., UDP 500 for
ISAKMP/IKE, UDP 4500 for NAT traversal) might already be in use.

e Reason: Another service (like a previous VPN setup or another
instance of strongSwan/OpenSwan) is occupying these ports.

c) Service Management Confusion

e Problem: Mismanagement of systemd or init.d scripts for starting,
stopping, and enabling services.

® Reason: Mixing manual starts with system-managed services
(systemctl, service) can lead to conflicts or missing runtime
dependencies.

3. Version or Build Issues

a) OpenSwan vs. LibreSwan vs. StrongSwan

e Problem: Differences in feature sets or configurations.
o OpenSwan: Older and less frequently updated.

o LibreSwan: Actively developed with better SELinux support
but stricter configuration requirements.

o StrongSwan: Modular and modern but slightly more complex
to configure.

® Reason: Each software has specific nuances in installation and
runtime requirements.

b) Source Build Errors

® Problem: Compiling from source can lead to issues.

e Reason: Missing build tools (gcc, make, cmake) or incorrect
configuration flags during the compilation process.

4. System Resource or Compatibility Issues

a) Insufficient Permissions

e Problem: Lack of root privileges or incorrectly configured sudo
permissions.

® Reason: Services require access to low-level networking, which
needs administrative rights.

b) Firewall Rules

e Problem: Firewalls like iptables or firewalld block necessary ports or
protocols.

e Reason: VPN services need specific rules to allow IPsec traffic.

c) SELinux or AppArmor

e Problem: Security frameworks block VPN service actions.

e Reason: SELinux/AppArmor policies may restrict execution or
networking operations.

5. Post-Installation Configuration Issues

a) Unresolved Routes

e Problem: Static or dynamic routes not configured properly in
ipsec.conf or the OS route table.

e Reason: IPsec tunnels require proper routing definitions for traffic
to flow.

b) Authentication Failures

e Problem: Errors in certificate/key-based or PSK-based
authentication setup.

® Reason: Misaligned cryptographic parameters or missing
authentication credentials.

c) Logging and Debugging
e Problem: Difficulty understanding error logs.

e Reason: VPN services often produce verbose but cryptic logs,
requiring detailed knowledge of IPsec protocols to troubleshoot

effectively.

How to Mitigate These Issues
1.Pre-Installation Checks

o Verify dependencies and kernel
compatibility.

o Ensure no conflicting services are running.
2.Use Official Documentation

o Follow step-by-step guides for the specific
VPN software version.

3.Debugging Tools

o Use logs from /var/log/ (e.g., syslog,
auth.log) to trace errors.

4.Testing

o Validate using ipsec status or ipsec verify
commands after setup.

5.Community Support

o Forums and GitHub repositories often
have solutions for common problemes.

By understanding these potential pitfalls, you can
streamline your troubleshooting process for these
VPN service installations and startups.

strongSwan, OpenSwan, and LibreSwan are
implementations of IPsec (Internet Protocol
Security), a protocol suite used to secure Internet
communications by authenticating and encrypting
IP packets. These tools are commonly used for
setting up VPNs (Virtual Private Networks) and
other secure network tunnels. Here's an overview:

1. What is IPsec?

® IPsec is a protocol suite designed for secure
communication over IP networks. It ensures:

o Data Integrity: Verifies that data has not
been altered during transit.

o Data Confidentiality: Encrypts data to
prevent unauthorized access.

o Authentication: Confirms the identity of
the communicating parties.

o Secure Key Exchange: Uses protocols like
IKE (Internet Key Exchange) to establish
secure session keys.

IPsec is widely used for:

® \/PNs to connect remote sites or users
securely.

® Encrypting data between devices over the
public internet.

e Hybrid cloud and on-premises connectivity.

2. strongSwan

e Overview: A modern, open-source
|Psec-based VPN solution.

e Key Features:

o Implements IKEvl and IKEv2 (Internet Key
Exchange protocols).

o Modular design with plugins for additional
features.

o Strong focus on security, supporting
robust cryptographic algorithms.

e Usage: Ideal for road-warrior (remote user)
VPNs, site-to-site VPNs, and connecting to
cloud services.

3. OpenSwan

® Overview: One of the older IPsec
implementations for Linux, derived from the
original FreeS/WAN project.

e Key Features:
o Supports IKEv].

o Offers basic VPN functionalities but is not
actively developed anymore.

e Usage: Previously popular for setting up
Linux-based VPNs but now largely replaced by
LibreSwan or strongSwan.

4. LibreSwan

® Overview: A fork of OpenSwan, actively
maintained and developed to provide
enhanced features and better compatibility.

e Key Features:

o Supports IKEvl and IKEv2.

o Better integration with SELinux and
modern Linux distributions.

o Focused on security, with regular updates
to patch vulnerabilities.

e Usage: Often used in enterprise Linux systems
for site-to-site VPNs and secure remote
access.

Why Use These?

These tools are essential for creating secure
connections between networks or devices,
especially when:

® Transmitting sensitive data over public
networks.

e Connecting geographically dispersed offices
securely (site-to-site VPN).

® Allowing remote users to access internal
resources securely (road-warrior setup).

® Creating hybrid cloud setups where
on-premises infrastructure connects to cloud
environments.

How They Differ
Feature strongSwan OpenSwan LibreSwan
Actively

Yes No Yes
Maintained _] x _J

Supports _] Yes X No _] Yes

IKEv2

Securit

y . Strong . Basic . Strong
Focus
Modern Cloud/Hybrid Basic Enterprise
Use Cases VPNs Site-to-Site Integration

In summary, these tools are critical for securely
implementing IPsec-based VPNs in Linux
environments. strongSwan is often preferred for
its modern features, while LibreSwan is a good
choice for enterprise setups.

What steps are typically taken to resolve each
type of issue, and what key elements should be
checked during the troubleshooting process?

--To overcome issues with strongSwan, OpenSwan, or LibreSwan, it’s

essential to systematically address the potential causes of installation,
configuration, and runtime problems. Here's a structured guide with steps
to resolve each kind of issue:

1. Installation Issues
a) Dependency Conflicts
e What to Check:

o Ensure required dependencies (libipsec,
libgcrypt, openssl) are installed.

o Verify versions of the dependencies are
compatible.

® Steps to Resolve:

0.Use package managers (apt, yum, dnf) to
install required libraries:

sudo apt-get install -y libgcrypt-dev libssl-dev

1.Check for missing dependencies using:

|dd /usr/shin/ipsec

2.Resolve conflicts by
upgrading/downgrading libraries as
needed.

b) Kernel Compatibility
e What to Check:

o Ensure the kernel supports IPsec with
required modules (xfrm_user, xfrm_algo).

o Check the kernel version compatibility
with the VPN software.

® Steps to Resolve:
0.Verify the required modules are loaded:

lsmod | grep xfrm

1.Install missing modules:

modprobe xfrm_user

2.Upgrade the kernel if needed.
c) Repository and Source
e What to Check:

o Ensure you are using the official
repositories or reliable source builds.

e Steps to Resolve:
0.Add the official repository for your tool:

sudo add-apt-repository ppo:strongswan/ppa
sudo apt-get update
sudo apt-get install strongswan

1.1f compiling from source:

= Download from the official website.

= |nstall build tools: gcc, make, etc.

2. Service Startup Issues
a) Configuration Errors
e What to Check:

o Verify correctness of ipsec.conf and
ipsec.secrets configuration files.

o Look for syntax errors or missing
parameters.

® Steps to Resolve:

0.Use example configurations provided in
the official documentation.

1.Test the configuration syntax:

ipsec checkconfig

b) Port Conflicts
e What to Check:

o Ensure ports UDP 500 (IKE) and UDP 4500
(NAT-T) are available.

e Steps to Resolve:
0.Check if ports are occupied:

sudo netstat -tuln | grep 500

e What to Check:

o Ensure the service is properly enabled and
running.

e Steps to Resolve:
0.Restart the service:

sudo systemctl restart strongswan

1.Enable it on boot:

sudo systemctl enable strongswan

Authentication Failures
e What to Check:

o Verify that the shared keys (PSK),
certificates, or credentials are correctly
configured.

® Steps to Resolve:

0.For PSK-based VPNs:

= Add the key to ipsec.secrets:

o 192.168.1.1192.168.2.1 : PSK "your-secret-key"

Firewall and Security Contexts
e What to Check:

o Ensure that firewalls (e.g., iptables,
firewalld) allow IPsec traffic.

o Verify SELinux/AppArmor policies are not
blocking the service.

e Steps to Resolve:

0.Update firewall rules:
bash
sudo iptables -A INPUT -p udp --dport 500 -j ACCEPT

sudo iptables -A INPUT -p udp --dport 4500 -j ACCEPT

1.Temporarily disable SELinux for testing:
bash

sudo setenforce 0

d) Logs and Debugging
e What to Check:
o Analyze logs for error messages.
® Steps to Resolve:
0.Check logs for errors:

sudo journalctl -u strongswan

1.Increase debugging level in ipsec.conf:
conf

charondebug="ike 2, knl 2, cfg 2"

Test Traffic Flow

® Send traffic through the VPN and confirm
encryption using:

bash

tcpdump -n -i <interfoce> esp

journalctl is a command-line tool used for

qguerying and viewing logs that are managed by
systemd's journal on Linux systems. It provides a
centralized logging system that collects and stores
logs from various services and the kernel. The logs
are stored in binary format and can be accessed
through journalctl, offering various filtering and
searching options.

. Persistent Logging

By default, journalctl stores logs in volatile
memory (RAM) unless configured to store logs on
disk. To enable persistent logging:

e Edit the /etc/systemd/journald.conf file:

o Set Storage=persistent to store logs on
disk.

o Restart the systemd-journald service:

sudo systemctl restart systemd-journald

1.Troubleshooting Service Issues: If you're
encountering issues with strongSwan, you can
check its logs:

journalct! -u strongswan

1.Checking Logs for VPN Connection Failures: If
a VPN connection is failing, you might want to
see logs from the VPN service with more
detailed information (e.g., debugging mode):

journalctl -u strongswan -p debug

2.Monitoring Kernel Messages: You can view
kernel messages (e.g., network stack issues,
hardware problems) by checking logs at the
kernel level:

journalctl -k

1.Error Tracing:

o Debugging logs are especially useful for
tracing the source of a problem. If there is
a failure (e.g., connection issue,
authentication failure), you can see the
exact sequence of events that led to the
issue.

2.Configuration Issues:

o It can show misconfigurations in real-time
as the service tries to apply settings. For
instance, if the wrong certificates are
loaded or if the service fails to apply a
setting in ipsec.conf, debugging mode will
log those events.

3.For a service like strongSwan running in

debugging mode, you might see output like
this in the logs:
4. charon: 09[NET] sending packet: from 192.168.1.1[500] to

192.168.2.1[500]

5. charon: 03[NET] received packet: from 192.168.2.1[500] to
192.168.1.1[500]

B. charon: 09[ENC] parsed IKE_SA_INIT request

7. charon: 09[ENC] found peer's public key
8. charon: 09[IKE] peer's public key: <public_key_here>

9. charon: 09[CFG] looking for matching configuration for
192.168.1.1... failed

10. This shows the exact flow of packets, what
was received and sent, and any failures (e.g., a
configuration mismatch).

11.

charon: 09[CFG] looking for matching
configuration for 192.168.1.1... failed

indicates that strongSwan was attempting to find
a matching configuration for the IP address
192.168.1.1 (probably the client or peer) but
failed. This message gives you a clue that the
system was unable to find the correct
configuration for this IP, which could be due to
various reasons.

How This Helps You Find the Problem:

Configuration Mismatch: Missing or Incorrect
Entries in the Configuration File:

Wrong VPN Configuration for the IP
Range/Subnet:
= jpsec.conf: Make sure that the server

configuration includes the correct
peer settings for the client IP
192.168.1.1.

2.Missing or Incorrect Authentication
Credentials:

o What to Check:

= Ensure that the correct pre-shared
keys (PSKs) or certificate
configurations are set for the peer IP.
= Verify that the certificates or PSK

entries are valid and match both sides
of the VPN connection.

conn myvpn

left=192.168.1.1 # Your local VPN server

right=192.168.2.1 # Remote VPN client or peer
authby=secret # or authby=rsasig for certificates
keyexchange=ikev2

leftsubnet=0.0.0.0/0

rightsubnet=0.0.0.0/0
ikelifetime=60m
keylife=20m
rekey=yes

Local endpoint: This is where you are
currently working — the local machine or
server on which you are configuring
strongSwan.

Remote endpoint: This is the other end of the
VPN connection — the other server, client, or
endpoint that you are trying to connect to

The Diffie-Hellman (DH) Group is a
cryptographic concept used in key exchange
protocols to securely exchange cryptographic
keys over a public channel

Common Diffie-Hellman Groups:

Each group has a different level of security, and they are identified by
numbers. Here are a few examples of Diffie-Hellman Groups:

1. Group 1 (768-bit prime modulus) - Weak and outdated.

2. Group 2 (1024-bit prime modulus) - Moderate security, but still
considered insecure for long-term security.

3. Group 5 (1536-bit prime modulus) - Stronger security.

4. Group 14 (2048-bit prime modulus) - Stronger security, commonly
used in modern VPNs.

5. Group 15 (3072-bit prime modulus) - Even stronger security,
suitable for very high security.

6. Group 16 (4096-bit prime modulus) - Very high security, used for
very sensitive communications.

Choosing the Right Diffie-Hellman Group:

e Stronger Groups (e.g., Group 14, Group 15, Group 16) provide
better security but require more computational resources and
time to compute the shared secret.

o Weaker Groups (e.g., Group 1, Group 2) are faster but less secure.
These are often considered outdated and are no longer
recommended for use.

Diffie-Hellman Groups in strongSwan:

In strongSwan, you can specify which DH group to use in your ipsec.conf
file for key exchange:

conn myvpn
keyexchange=ikev2
ike=ues256-sha2_256-modp2048 # Specifies DH Group 14 (2048-bit)

Here, modp2048 specifies that Group 14 is being used for the key
exchange.

